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The(Land(Informa4on(System((LIS;(hHp://lis.gsfc.nasa.gov)(
(is(a(common(land(data(assimila4on(infrastructure(for(NASA/DoD/

NOAA(and(soon(USGS(
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Figure 4:  Changes in annual-average terrestrial 
water storage (the sum of groundwater, soil water, 
surface water, snow, and ice, as an equivalent height 
of water in cm) between 2009 and 2010, based on 
GRACE satellite observations.  Future observations 
will be provided by GRACE-II. 

Figure 5:  Current lakes and reservoirs monitored by 
OSTM/Jason-2.  Shown are current height variations 
relative to 10-year average levels. Future 
observations will be provided by SWOT. 

Figure 2:  Annual average precipitation from 1998 to 
2009 based on TRMM satellite observations. Future 
observations will be provided by GPM. 
 

Figure 1:  Snow water equivalent (SWE) 
based on Terra/MODIS and Aqua/AMSR-E.  
Future observations will be provided by JPSS/
VIIRS and DWSS/MIS. 

Figure 3:  Daily soil moisture based on Aqua/
AMSR-E.  Future observations will be 
provided by SMAP. 

Land(Data(Assimila4on(Objec4ves(



Figure 3:  Daily soil moisture based on Aqua/
AMSR-E.  Future observations will be 
provided by SMAP. 

Soil(Moisture(Data(Assimila4on(

Impact Assessment: 
•  Drought 

Variables Analyzed: 
•  Soil Moisture 
•  Evapotranspiration 
•  Steamflow 

Experimental Setup: 
•  Domain: CONUS, NLDAS 
•  Resolution: 0.125 deg. 
•  Period: 2002-01 to 2010-01 
•  Forcing: NLDASII 
•  LSM: Noah 3.2 

Data Assimilation: 
•  AMSR-E LPRM soil moisture 
•  AMSR-E NASA soil moisture 

Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011:  Estimating evapotranspiration with land data 
assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387 



Soil Moisture Assimilation <- Precipitation Impact 
  

Liu, Q., R. H. Reichle, R. Bindlish, M. H. Cosh, W. T. Crow, R. de Jeu, G. J. M. De Lannoy, 
G. J. Huffman, and T. J. Jackson: 2011,The contributions of precipitation and soil moisture 
observations to the skill of soil moisture estimates in a land data assimilation system. J. 
Hydrometeor., 12, 750-765, doi:10.1175/JHM-D-10-05000.1. 



Soil Moisture Assimilation -> Latent Heat Flux 
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Where Does Soil Moisture Assimilation Help Improve 
Qle (i.e. Reduce RMSE) ? 

  

Pg. 9 
Peters-Lidard, Christa D., Sujay V. Kumar, David M. Mocko and Yudong Tian, (2011), Estimating 
Evapotranspiration with Land Data Assimilation Systems, In press, Hyd. Proc.  
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Landcover type NASA-DA 

(Wm-2)  

LPRM-DA  

(Wm-2) 

NASA-DA 

(Wm-2)  

LPRM-DA  

(Wm-2) 

Evergreen needleleaf forest 17.6 7.9 10.5 -3.6 

Deciduous broadleaf forest 3.2 12.7 0.3 0.7 

Mixed forest 1.8 8.0 -0.7 -0.9 

Woodlands 16.4 18.9 11.5 -5.9 

Wooded grassland 8.8 -0.5 9.6 0.3 

Closed shrubland 7.3 3.4 2.5 8.9 

Open shrubland 9.0 7.4 3.6 12.1 

Grassland 23.9 7.1 32.9 46.4 

Cropland 12.3 34.7 30.9 40.8 

Bare soil -0.1 0.6 -0.8 1.4 

Urban -0.1 -0.1 -0.2 -0.3 

Where Does Soil Moisture Assimilation Help Improve 
Qle (i.e. Reduce RMSE) ? 

  

Peters-Lidard, C.D, S.V. Kumar, D.M. Mocko, Y. Tian, 2011:  Estimating evapotranspiration with land data 
assimilation systems, Hydrological Processes, 25(26), 3979--3992, DOI: 10.1002/hyp.8387 



Soil(Moisture(Assimila4on(,>(Streamflow((
Evalua4on(vs.(USGS(gauges(–(by(major(basins(



Soil(Moisture(Assimila4on(,>(Streamflow((
(average(seasonal(cycles(of(RMSE–(using(Xia(et(al.((2011)(sta4ons)(
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Summary(
!  The(combina4on(of(improved(precipita4on(from(GPM(and(improved(soil(

moisture(from(SMAP(should(significantly(improve(surface(and(root(zone(soil(
moisture(states(

!  Soil(moisture(assimila4on(can(also(improve(streamflow(and(
evapotranspira4on(

!  Opportuni4es:(
!  Opera4onal(LIS(implementa4ons(at(AFWA,(NOAA/NCEP,NOAA/NOHRSC(
!  Tes4ng(CMORPH(at(AFWA—should(be(ready(for(iMERG(from(GPM(
!  Developing(capabili4es(for(FEWS,NET(and(IWRSS(
!  Near,term(GPM(Field(Campaigns(with(Hydrology(Focus:(
–  iFLOODS’13:(Large(Scale(Flood:((Iowa,(May,July,(2013(
–  HMT,SE:(Orographically,Enhanced(Convec4on:(HydroMeteorological(Testbed((HMT),

Southeast(((joint(with(NOAA),(North(Carolina,(May,July(2014(
–  SMAPex:(Arid(Monsoon:(San(Pedro,Walnut(Gulch,(Arizona,(Jul,Aug.,(2015((dependent(on(

SMAP(valida4on(plans).(
–  OLYMPEX:(Snow,Rain(transi4on/Orographic/Flooding:(western(Olympic(Peninsula,(

Washington,(Nov,Dec.(2015.(

(
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NASA$GPM1GV$FIELD$CAMPAIGN$IFLOODS’13$
Sub1watershed$PerspecAve$



NASA$GPM1GV$FIELD$CAMPAIGN$IFLOODS’13$
ExisAng$Infrastructure$

HUC(6(,(scale(

! USGS Stream 
gauges 

! IFC Bridge Sensors 



NASA$GPM1GV$FIELD$CAMPAIGN$IFLOODS’13$
Instrument$Deployment$
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NASA’s Land Information System Supports Alaska Snow Analysis for  
NOAA’s Operational Hydrologic Remote Sensing Center (NOHRSC)  

Christa D. Peters-Lidard, Sujay V. Kumar, Yuqiong Liu and the LIS Team, Code 617, NASA GSFC  
NOAA’s National Operational Hydrologic 
Remote Sensing Center (NOHRSC) 
recently implemented an experimental land 
surface model output for Alaska using 
NASA’s Land Information System (LIS) 
software. 
 
NOHRSC experimental LIS-based 
snowpack information for Alaska takes the 
form of a four-member "ensemble" 
consisting of two forcing data systems 
(GDAS and NAM) and two land surface 
models (CLM and Noah). Each forcing 
system is used to drive each model using 
NASA's Land Information System (LIS) 
software. Consequently, four independent 
sets of snowpack states are available: 
GDAS+CLM, GDAS+Noah, NAM+CLM, 
and NAM+Noah.  
 
Key: 
NAM= the North American Mesoscale 
(NAM) model 
GDAS= Global Data Assimilation System, 
CLM= Community Land Model version 2.0 
Noah= The Community Noah land surface 
model version 3.2 

Figure$2:$The(experimental(modeled((GDAS+CLM)(snow(
water(equivalent(for(May(23,(2012,(0:00(Z.(Differences(from(
Figure(1(are(related(to(differences(in(snowfall(and(snowpack(
physics.(

Figure$1:$The(experimental(modeled((NAM+Noah)(snow(
water(equivalent(for(May(23,(2012,(0:00(Z.(



$$$$$$$$$$$$$$$$$$$$$$$$$Name:(Christa(D.(Peters,Lidard(and(the(LIS(team,(NASA/GSFC,(Code(617(
(E,mail:(Christa.Peters@nasa.gov((
(Phone:(301,614,5811(

(
References:$
Peters,Lidard(,(C.D.,(P.R.(Houser,(Y.(Tian,(S.V.(Kumar,(J.(Geiger,(S.(Olden,(L.(Lighty,(B.(Doty,(P.(Dirmeyer,(J.(Adams,(K.(Mitchell,(E.F.(Wood(and(
J.(Sheffield,(2007:(High,performance(Earth(system(modeling(with(NASA/GSFC's(Land(Informa4on(System.(Innova6ons,in,Systems,and,
So2ware,Engineering.(3(3),(157,165.(DOI:10.1007/s11334,007,0028,x(
(
Kumar(,(S.V.,(C.D.(Peters,Lidard,(Y.(Tian,(P.R.(Houser,(J.(Geiger,(S.(Olden,(L.(Lighty,(J.L.(Eastman,(B.(Doty,(P.(Dirmeyer,(J.(Adams,(K.(Mitchell,(E.(
F.(Wood(and(J.(Sheffield,(2006:(Land(Informa4on(System(,(An(Interoperable(Framework(for(High(Resolu4on(Land(Surface(Modeling.(
Environmental,Modelling,&,So2ware,(Vol.21,(1402,1415.(DOI:10.1016/j.envsos.2005.07.004((
(
(
Data$Sources:$$LIS((version(6(sosware,(downloaded(by(agreement(from(lis.gsfc.nasa.gov(by(our(partners(at(NOAA(NOHRSC,(including(
Gregory(Fall(on(the(NOHRSC(team.((Numerous(other(data(sources(used(in(the(analysis,(including(NOAA’s(Global(Data(Assimila4on(System(
(GDAS)(and(the(North(American(Mesoscale((NAM)(model(products,(available(at((hHp://nomads.ncdc.noaa.gov/data.php.(
(
$
Technical$DescripAon$of$Figures:$
Figure'1:'This(figure(is(taken(from(the(experimental(NOHRSC(page((hHp://www.nohrsc.noaa.gov/interac4ve/html/map.htm),(and(shows(
the(experimental(modeled((NAM+Noah)(snow(water(equivalent(for(May(23,(2012,(0:00(Z.(
(
Figure'2:'This(figure(is(taken(from(the(experimental(NOHRSC(page((hHp://www.nohrsc.noaa.gov/interac4ve/html/map.htm),(and(shows(
the(experimental(modeled((GDAS+CLM)(snow(water(equivalent(for(May(23,(2012,(0:00(Z.(
(
$
ScienAfic$significance:$Improvements(to(land(surface(snowpack(states,(including(snow(water(equivalent,(snow(depth,(and(snow(cover,(lead(
to(direct(improvements(in(streamflow(and(hydrological(forecas4ng(at(NOAA(River(Forecast(Centers(supported(by(NOHRSC,(such(as(the(
Alaska(River(Forecast(Center.((The(flexibility(and(configurability(of(the(LIS(sosware(infrastructure((simplifies(the(process(for(improving(snow(
and(other(hydrological(analyses(for(our(partners(at(NOAA/NOHRSC.(
(
$
Relevance$for$future$science$and$relaAonship$to$Decadal$Survey:$The(adop4on(of(the(LIS(infrastructure(by(our(partners(at(NOHRSC((under(
funding(from(NASA’s(Earth(Science(Applica4ons(Program)(sets(them(up(to(be(early(adopters(of(Decadal,Survey(era(data,(including(snowfall(
products(from(GPM,(and(freeze,thaw(and/or(soil(moisture(products(from(SMAP.((The(strongest(interest(is(for(snow,related(products,(which(
may(be(available(from(NPP/VIIIRS(as(well(as(ICESat,2,(as(well(as(eventually(from(the(4er,3(SCLP(mission.(



NASA’s Land Information System Supports Land Analysis for NOAA’s  
Climate Forecast System Reanalysis (CFSR)  
Christa D. Peters-Lidard and the LIS Team, Code 617, NASA GSFC  

NOAA’s National Centers for 
Environmental Prediction (NCEP) 
recently completed a new coupled global 
reanalysis, known as CFSR, for the 
period 1979–present.  This reanalysis 
has significantly higher temporal and 
spatial resolution than previous 
reanalyses, known as R1 and R2.   
 
The NASA Land Information System 
(LIS) infrastructure is employed to 
execute the global land data analysis 
system (GLDAS) for CFSR. To support 
CFSR-GLDAS, NCEP took advantage of 
LIS’ flexible grid and parameter support 
to configure LIS with the identical land 
model setup as in the fully coupled 
Climate Forecast System.  Compared to 
R1 and R2, this CFSR-GLDAS uses 
observed global precipitation analyses as 
direct forcing to the land surface analysis, 
which leads to a more realistic soil 
moisture initial conditions for the coupled 
reanalysis system. CFSR-GLDAS 
interacts with the reanalysis once per 
day, instead of every time step.  

Figure 2: Time series of annual and global mean 2m temperatures over land, with R2 
shown in green, CFSR in red and  independent (non-assimilated) observations in blue.  The 
2m air temperature over land is sensitive to the land surface soil moisture. 

Figure 1: The 2-m volumetric soil moisture climatology of CFSR, from the LIS-based CFSR-
GLDAS for May averaged over 1980–2008.  



$$$$$$$$$$$$$$$$$$$$$$$$$$Name:(Christa(D.(Peters,Lidard(and(the(LIS(team,(NASA/GSFC,(Code(617(
(E,mail:(Christa.Peters@nasa.gov((
(Phone:(301,614,5811(

(
References:$

Saha,(Suranjana,(and(Coauthors,(2010:(The(NCEP(Climate(Forecast(System(Reanalysis.(Bull.,Amer.,Meteor.,Soc.,(91,(1015–1057.((
DOI:(10.1175/2010BAMS3001.1.(
(
Peters,Lidard(,(C.D.,(P.R.(Houser,(Y.(Tian,(S.V.(Kumar,(J.(Geiger,(S.(Olden,(L.(Lighty,(B.(Doty,(P.(Dirmeyer,(J.(Adams,(K.(Mitchell,(E.F.(Wood(and(
J.(Sheffield,(2007:High,performance(Earth(system(modeling(with(NASA/GSFC's(Land(Informa4on(System.(Innova6ons,in,Systems,and,
So2ware,Engineering.(3(3),(157,165.(DOI:10.1007/s11334,007,0028,x(
(
Kumar(,(S.V.,(C.D.(Peters,Lidard,(Y.(Tian,(P.R.(Houser,(J.(Geiger,(S.(Olden,(L.(Lighty,(J.L.(Eastman,(B.(Doty,(P.(Dirmeyer,(J.(Adams,(K.(Mitchell,(E.(
F.(Wood(and(J.(Sheffield,(2006:(Land(Informa4on(System(,(An(Interoperable(Framework(for(High(Resolu4on(Land(Surface(Modeling.(
Environmental,Modelling,&,So2ware,(Vol.21,(1402,1415.(DOI:10.1016/j.envsos.2005.07.004((
(
Data$Sources:$$LIS((version(5(sosware,(downloaded(by(agreement(from(lis.gsfc.nasa.gov(by(our(partners(at(NOAA(NCEP,(including(Michael(
Ek,(Jesse(Meng,(and(Heilin(Wei(on(the(NCEP(Land(Team.((Numerous(other(data(sources(used(in(the(reanalysis,(including(NASA’s(Aqua/AIRS,(
AMSR,E(and(AMSU,A,(are(described(at(hHp://cfs.ncep.noaa.gov/cfsr.(
(
Technical$DescripAon$of$Figures:$
Figure'1:'This(figure(is(taken(from(the(CFSR(BAMS(ar4cle((Figure(17),(and(shows(the(2,m(volumetric(soil(moisture(climatology(of(CFSR,(from(
the(LIS,based(CFSR,GLDAS(for(May(averaged(over(1980–2008.((
(
Figure'2:'This(figure((is(taken(from(the(CFSR(BAMS(ar4cle((Figure(19),(and(shows(4me(series(of(annual(and(global(mean(2m(temperatures(
over(land,(with(R2(shown(in(green,(CFSR(in(red(and((independent((non,assimilated)(observa4ons(in(blue.((The(2m(air(temperature(over(land(
is(sensi4ve(to(the(land(surface(soil(moisture.(
$
ScienAfic$significance:$Improvements(to(land(surface(states,(including(soil(moisture,(temperature(,(snow(pack(and(vegeta4on,(lead(to(direct(
improvements(in(land(surface(fluxes(and(atmospheric(states(such(as(2m(air(temperature.((The(flexibility(and(configurability(of(the(LIS(
sosware(infrastructure((simplifies(the(process(for(improving(land(analyses(for(our(partners(at(NOAA/NCEP.(
$
Relevance$for$future$science$and$relaAonship$to$Decadal$Survey:$The(adop4on(of(the(LIS(infrastructure(by(our(partners(at(NCEP(sets(them(
up(to(be(early(adopters(of(Decadal,Survey(era(data,(including(precipita4on(from(GPM,(and(soil(moisture(from(SMAP,(among(others.(



(

(A$Land$Data$AssimilaAon$System$for$Famine$Early$Warning$$
Co?PIs:((James,Verdin,and,Chris,Funk,,USGS;,,

Co?Is:,Christa,Peters?Lidard,,Soni,Yatheendradas,,Sujay,Kumar,,Brad,Wind,,Jim,Geiger,,Shugong,
Wang,and,Kris6,Arsenault,,NASA/GSFC,617;,Dennis,LeUenmaier,,UW;,Molly,Brown,,NASA/GSFC,

618;,Michael,DeWnger,,USGS,

Highlight:(The(recently(developed(FEWS(NET(Land(
Data(Assimila4on(System((FLDAS)(custom(instance(of(
NASA's(Land(Informa4on(System((LIS)(sosware(
supports(the(use(of(mul4ple(satellite(inputs(and(land(
models(to(quan4fy(their(impacts(on(agricultural(
drought,related(informa4on.(For(example,(
characterizing(uncertain4es(though(the(FLDAS(mul4,
model(ensemble(helps(to(assess(the(resul4ng(
uncertainty(of(drought(indices(such(as(the(Water(
Requirement(Sa4sfac4on(Index((WRSI).(((See(Fig.(1(
using(LIS/WRSI,(LIS/Noah(and(LIS/VIC(land(surface(
models(for(East(Africa.(

Relevance:(Informa4on(from(mul4ple(satellite,based(
inputs,(land(surface(models(and(their(relevant(
enhancement(towards(FEWS(NET(goals,(fills(a(cri4cal(
informa4on(gap(towards(beHer(specifica4on(of(losses(
to(agricultural(yields(and(related(food(insecurity.(
Uncertainty(informa4on(helps(to(beHer(quan4fy(the(
value(to(society,relevant(hazards(like(famine.(

ESD$Applied$Sciences$Program:$Decisions10810070$ $Disaster$Management$
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